
Tensor: A Transaction-Oriented Low-Latency and
Reliable Data Distribution Scheme for Multi-IDCs

Based on Redis
Zhongyi Zhang

Institute of Information Engineering
Chinese Academy of Sciences
& School of Cyber Security

University of Chinese Academy of
Sciences

Beijing, China
zhangzhongyi@iie.ac.cn

Chao Zheng
Institute of Information Engineering

Chinese Academy of Sciences
Beijing, China

zhengchao@iie.ac.cn

Wei Yang
Institute of Information Engineering

Chinese Academy of Sciences
Beijing, China

yangwei@iie.ac.cn

Yang Liu
Institute of Information Engineering

Chinese Academy of Sciences
Beijing, China

liuyang@iie.ac.cn

Rong Yang*
Institute of Information Engineering

Chinese Academy of Sciences
Beijing, China

yangrong@iie.ac.cn

Qingyun Liu
Institute of Information Engineering

Chinese Academy of Sciences
Beijing, China

liuqingyun@iie.ac.cn

Abstract—In order to ensure the data security, high avail-
ability of services and good access performance, more and
more large-scale distributed systems are deployed across IDCs.
When different parts of distributed systems work cooperatively,
critical data such as configuration and control information will
be frequently exchanged across IDCs.

Faced with the latency and reliability challenges introduced
by cross-IDC data distribution. We propose a Redis-based low-
latency data publish/subscribe framework: Tensor. In order to
deal with the problems of data loss and duplication caused
by network anomalies or cluster node failures, we design a
transaction-oriented information transfer mechanism in Tensor
to guarantee the eventual consistency in cross-IDC data distri-
bution. To improve the data synchronization performance, we
optimized Redis’s replication mechanism to make it better suit
the unstable network links between cross-area IDCs. What’s
more, we design an intelligent log analysis based system
bottleneck prediction method and a service discovery oriented
system failover strategy to ensure the high availability of data
distribution service. An extensive set of tests on Tensor in
the production environment prove the low-latency and high-
reliability of its data distribution service.

Index Terms—cross-IDC data distribution, transaction-
oriented, Replication Backlog, intelligent log analysis

I. Introduction
With the rapid development of the Internet scale and

the diversification of Internet services, single server can no
longer support the need of mass data storage and highly
concurrent user access, so, distributed systems has been
applied more and more widely. In order to ensure high
availability of services as well as improve systems’ perfor-
mance, more and more large-scale distributed systems are

Corresponding author: yangrong@iie.ac.cn

deployed across IDCs. When different parts of distributed
systems work cooperatively, critical data such as configure
and control information should be frequently exchanged
across data centers.

The critical data transmitted between different parts of
distributed systems is very sensitive to latency. However,
the deploying scenarios of cross-IDC distributed system
pose a significant challenge to low-latency data distribu-
tion between different inner components. Firstly, for the
consideration of data security, IDCs are usually located
in different areas, which means high network transmis-
sion latency. Secondly, information transmission between
different data centers requires multi-hop routing, routing
selection and switching will lead to higher data processing
delay. Thirdly, in cross-area network environment, the
contention for link bandwidth is serious, which is a barrier
to fast data transmission.

For key information with high value and sensibility,
cross-IDC data distribution service must be highly reliable
while ensuring low latency. However, the reliability of data
distribution service also faces a number of challenges:
Above all, the underlying physical nodes of the data
distribution service are at risk of failure. According to
the report of Facebook, the Hadoop cluster consisting
of 3000 nodes has an average of 22 node failures per
day, with the highest number of node failures exceeding
100 per day [1]. Furthermore, fire, earthquake, thunder
and other irresistible factors will seriously threaten the
normal operation of IDC rooms, and further damage the
reliability of data distribution service. Last but not least,
cross-area network links are unstable which will cause



network congestion and packet loss thus threaten the
normal transmission of data.

Therefore, in the scenario of cross-IDC deployment of
distributed systems, it’s of great significance to study how
to effectively reduce critical data’s distribution latency
and improve the reliability of data distribution service.
In this paper, we propose a Redis-based low-latency data
publish/subscribe framework: Tensor. We use Redis [2]
which is an open source, in-memory NoSQL database to
store and distribute critical data between different cross-
IDC components in a large distributed system. The K/V
data storage method of Redis can well meet the processing
requirements of configure and control information. What’s
more, Redis provides flexible master-slave synchronization
method with full-scale and incremental replication func-
tion which is friendly for data distribution in unstable
network environment. In order to deal with the problem
of data loss and duplication caused by network anomalies
or cluster node failures, we design a data-consistent
information transfer mechanism in Tensor to guarantee the
eventual consistency in cross-IDC data distribution. And
then, to improve the data synchronization performance,
we optimized Redis’s replication mechanism to make it
better suit the unstable network links between cross-
area IDCs. Finally, we design an intelligent log analysis
based system bottleneck prediction method and a service
discovery oriented system failover strategy to ensure the
high availability of data distribution service.

The rest of the paper is organized as follows: Section II
discusses the related works. Section III presents the system
architecture of Tensor. Section IV elaborates the specific
method designs. Section V introduces the extensive set
of tests in the production environment. And finally the
paper is concluded in Section VI.

II. Related Work
This section mainly introduces the domestic and foreign

situations towards the study of the data distribution
middleware both in academia and industry.

In academia, HBaseMQ [3] is the first advanced message
queue based on the HBase Cloud, it supports “at least
once” or “at most once” message delivery semantics, and
has no limitation on the message size. However, HBaseMQ
is highly coupled with Hadoop/HDFS ecosystem and is
not suitable for the data distribution service in general
scenarios. HDMQ [4] uses hierarchical distributed message
queues and supports the data transmission in cross-
domain scenarios, it guarantees the time-sequence and
“exact once” semantics of data delivery, the size of the
message in it is limited to no more than 512KB. FaBRiQ
[5] is based on DHT(distributed hash table), in which
the P2P data transmission strategy is used to ensure
the flexibility and scalability of the Broker cluster, it
is suitable for the data distribution scenarios where the
disordering of messages is allowed. RDDS [6] relies on the
publish/subscribe model, it can maintain the robustness,

efficiency and consistency of the data distribution service
under unpredictable workloads, its main application area
is the scenarios of data transmission between entities with
small spatial span. CoreDX DDS [7] is compatible with the
OMG DDS standard [17], it can meet the requirements
of “getting the right data at the right time and right
place” and mainly used in embedded systems. CoreDX
DDS chiefly focuses on improving the overall performance
of the data distribution service, its reliability is relatively
low.

In industry, Apache Kafka [8] is an open source
message distribution middleware with high throughput.
It guarantees the order of messages within a partition,
but the message sequence between partitions cannot be
ensured. Kafka supports “at least once” or “at most once”
message delivery semantics, and can adapt to the growing
amount of data by increasing the number of Brokers
horizontally, in cross-area data distribution scenarios, its
latency will be relatively high. RocketMQ [9] emerges by
the driving of Alibaba’s specific business needs. But in
pursuit of the high throughput and low latency of message
transmission, RocketMQ abandons the high reliability of
its data distribution service. Amazon SQS [10] [11] [12]
is a message-oriented middleware widely used in business
at present which is simple, safe and performs well in the
aspect of scalability and service availability, it ensures the
“at least once” message delivery semantic, and the size of
the message is limited to no more than 512KB. Tencent
CMQ [13] supplies distributed message queuing services
with high reliability and great performance. The ability of
elastic expansion and massive data stacking is provided as
well. However, it uses the cold standby method for fault
tolerance which will take relatively longer time for service
discovery. Dragonfly [14] is a general data distribution
system based on intelligent P2P technology which can
solve challenges in the large-scale file distribution scenario,
such as problems of the high time consumption, low
success rate, bandwidth waste and so on, it is mainly
applied to transmit large files such as containers and
mirrors.

In summary, to the best of our knowledge, no matter
in academia or industry, existing middlewares cannot
simultaneously meet the high availability and low latency
requirements of the large-scale cross-IDC data distribution
service in general scenarios.

III. System Architecture Overview
A. Basic Architecture

Faced with the cross-area data distribution scenario,
we implemented a Redis-based low-latency data pub-
lish/subscribe framework with hierarchical architecture
called Tensor.

The basic architecture of Tensor is shown as “Fig. 1”
and “Fig. 2”, it composes of three different parts: Data
Publisher, Data Subscriber and Broker. The Data Pub-
lisher/Subscriber is responsible for the interaction with



the Data Producer/Consumer, and the Broker refers to
the inner physical nodes of our data distribution cluster.
We divide the Broker nodes into two tiers, and all Broker
nodes at the same tier form a BrokerSet [15] [16]. Multiple
Redis instances are started on each Broker, one of which is
the master and the others are slaves. The terms in Tensor
are explained in “Table I”.

Fig. 1. The basic architecture of Tensor: the DCPS layer and the
DLRL layer.

Fig. 2. The basic architecture of Tensor: the Tier-1 BrokerSet and
the Tier-2 BrokerSet.

TABLE I
The interpretation of terms in Tensor

Terms Interpretations Businesses
Publisher The data publisher Produce and send data
Subscriber The data subscriber Receive and consume

data
Broker The data storage and

distribution node
Receive, store and dis-
tribute data

BrokerSet The cluster of brokers A cluster of brokers, usu-
ally deployed in different
IDCs

We follow the OMG DDS [17] specification, which
divides the data distribution service into two distinct lay-
ers, the low-level DCPS(data-centric publish/subscribe)
layer and the high-level DLRL(data local reconstruc-
tion) layer. Among them, DCPS is responsible for the

efficient and accurate transmission of information from
data publishers to data subscribers, DLRL abstracts the
functions provided by DCPS and establishes the mapping
relationship with the underlying services. In Tensor, the
Broker nodes constitute the low-level DCPS layer, while
the Data Publishers/Subscribers constitute the high-level
DLRL layer.

B. Module Design
In the specific module design aspect, Tensor consists of

three different tiers: the Application Tier, the Manage-
ment Tier and the Service Tier, as shown in “Fig. 3”.

Fig. 3. The module design of Tensor.

In the Application Tier, we defined a set of data
communication interfaces between subsystems of data
distribution business. What’s more, we provide lightweight
clients that include publishing and subscribing interfaces
for multiple types of data.

In the Management Tier, Data Publishers/Subscribers
and BrokerSets establish long connections with Managers,
and send heartbeats regularly, so that Managers can
monitor the status and health of Tensor. In addition, this
layer also supports abnormity alarm which can ensure the
stable operation of the whole system indirectly. Last but
not least, real-time status of the system’s performance is
displayed, including average or variance of data distribu-
tion time, system’s link topology information, the running
states of each node, and so on.

The Service Tier is the core of our data distribution
service, we design three different kinds of BrokerSets
to meet the requirements of cross-IDC data distribution
service, which are defined as below:

• The Core BrokerSet: The Core BrokerSet plays the
part of bridges between Data Publishers and the
Tandem BrokerSet.

• The Tandem BrokerSet: In order to distinguish the
Core BrokerSet which connects to Data Publishers
and the Access BrokerSet which connects to Data
Subscribers, we named the BrokerSet in the middle



layer as Tandem BrokerSet which can be arbitrarily
extended. If the number of Data Subscribers or the
network scale is small, Tandem BrokerSet may not
be deployed.

• The Access BrokerSet: The Access BrokerSet plays
the role of bridges between the Tandem BrokerSet
and Data Subscribers.

Due to the hierarchical design of the architecture,
Tensor supports both scale-out and scale-up. When a
single data center cannot meet the demands for enterprise
scale, we can horizontally add BrokerSets within or outside
the same city to achieve horizontal expansion. If the
subscribers’ number or network scale increases, and data
needs to be transmitted across areas or even across
network operators, we can extend the Tandem BrokerSets
vertically to meet the above requirements.

IV. Specific Method Design
A. A transaction-oriented data publish/subscribe ap-
proach

In order to avoid data inconsistency between subscribers
and publishers due to node, network or IDC anomalies,
we design an asynchronous transaction-based data pub-
lish/subscribe approach. Every single step of information
transmission is strictly protected by the transaction mech-
anism on the foundation of Redis.

The basic architecture of our approach is shown in
“Fig. 4”, we support multiple businesses, each of them
corresponds to a database in Redis respectively, and
the isolation between different businesses will be severely
ensured. “Table II” shows the specific data structures
we designed to guarantee the eventual data consistency
between Data Publishers and Subscribers, and we store
the data structures in the Redis component.

Fig. 4. The basic architecture of an asynchronous transaction-based
data publish/subscribe approach.

On the Data Publisher side, each manipulation ac-
tivity to our database is recorded by a global unique
version id, namely Tensor_VERSION in “Table II”. The

TABLE II
The specific data structures of the asynchronous transaction-based

data publish/subscribe approach

Redis Key Explanation Structure
Tensor_VERSION Version ID Integer
Tensor_UPDATE_STATUS The update status

of data
Sorted set

EFFECTIVE_RULE:ID Effective data String
OBSOLETE_RULE:ID Obsolete data String
Tensor_EXPIRE_TIMER Timeout informa-

tion
Sorted set

manipulation commands are divided into two different
types: addition commands and deletion commands, the
format of the two kinds of commands are “ADD, ID”
and “DEL, ID” respectively, in which “ADD” and “DEL”
indicate data operations, and “ID” uniquely targets one
specific piece of data. Several commands form one manip-
ulation activity�and every single manipulation activity is
protected by the transaction mechanism of Redis, which
ensures the integrity and time sequence of the data in the
same batch. The manipulation commands are stored as
the member part in a sorted set in Redis which named
Tensor_UPDATE_STATUS, and the version id of each
manipulation activity mentioned above is stored as the
score part of Tensor_UPDATE_STATUS. Every time,
after we publish a set of manipulation commands to
Tensor as the same batch, the Tensor_VERSION will be
increased by one and the manipulation activity will be
uniquely recorded by this version id.

On the Data Subscriber side, each Subscriber maintains
a version id locally which is called Sub_VERSION, and
the subscription behavior is driven by a trigger we name
it Data_Traverser: a separate monitor which compares
Sub_VERSION and Tensor_VERSION periodically, once
Data_Traverser finds the local Sub_VERSION lags be-
hind the global Tensor_VERSION, the Subscriber will
be triggered to subscribe the newest manipulation com-
mands from Tensor, more specifically, we use ZRANGE-
BYSCORE command to get the data whose version
ID falls between Sub_VERSION and Tensor_VERSION
from the sorted set named Tensor_UPDATE_STATUS in
Redis. Every time when a Subscriber gets a full version of
data from Tensor, its local Sub_VERSION will be added
by one. The publication/subscription of manipulation
commands as well as the increase of Sub_VERSION and
Tensor_VERSION are all severely protected by transac-
tion, and the duplication or loss of valuable data will be
strictly prevented.

In order to ensure Tensor’s low consumption of memory
space, each manipulation command is set a certain life
cycle, the precise expiration timestamp of each command
can be calculated by using this certain life cycle add the
exact timestamp when data is published. We use another
sorted set in Redis named Tensor_EXPIRE_TIMER to



store the above information, of which the member part
is the manipulation commands and the score part is
their corresponding expiration timestamp. The expired
commands until this very moment will be monitored by
a separate trigger named Data_Scavenger, which will
periodically use ZRANGEBYSCORE command to get the
members in Tensor_EXPIRE_TIMER whose expiration
timestamp is between negative infinity and the current
moment, and then the corresponding keys will be set
ineffective using EXPIRE command. Redis will clear these
ineffective keys after a certain period of time.

B. An efficiency-guaranteed data distribution mechanism
In the production environment, Tensor performs dozens

to hundreds of data distribution tasks every day, several
of them are the mission to transmit large files of data
types, the size of a single file is around 1.5GB, the
remaining tasks are to transmit configuration or control
type messages, the total data amount of s single task
ranges from several hundred KBs to a few MBs.

In Tensor, the efficiency of data distribution is largely
determined by the performance of Redis’s master-slave
synchronization. The reason for Redis’s execution of data
synchronization is the inconsistent status between master
and slave servers. Most of the time, the “Command
Propagate” method [2] is used by Redis to synchronize
data, in which case, the commands propagated from the
master sever will not only be received and executed by
all slave servers, they will also be inserted into a circular
queue named “Replication Backlog”, as shown in “Fig. 5”.
The space of Replication Backlog is limited, after all of
which been occupied, the old data will be covered from
the Head pointer, so only the newest commands will be
kept in Replication Backlog.

Fig. 5. The basic structure of the Replication Backlog in Redis.

In the unstable network environment between cross-
area IDCs, the occurrence of the master-slave connection’s
abnormality is almost inevitable. Every time when broken
connections between master and slave servers are restored,

the Offset values maintained by slaves will be sent to
the master server, we denoted them as Offset_Recv.
If the write commands executed by the master server
whose Offset value is larger than Offset_Recv are all
still remained in Replication Backlog, they will be sent to
slaves directly, otherwise, full resynchronization is needed.

In order to avoid the full data synchronization of Redis
to the greatest extent in cross-IDC network environment,
we design a dynamic Replication Backlog adjustment
method based on exponential backoff strategies.

We denote the size of Redis’s Replication Backlog as
R_B_Size and set its initial value to 10MB(Exceed the
maximum amount of data size for a single transmission
task of small messages). The real-time data write rate of
the Master server was monitored by a separate trigger
we name it Buffer_Regulator, meanwhile, the average
duration time of each disconnection event between master
and slave servers in the last 24 hours will be calculated
and recorded, we call it Aver_Disconnect_Time.

The trigger Buffer_Regulator will compute the
product of the real-time data write rate and
Aver_Disconnect_Time periodically in every 30 seconds
and we denote the result as Prediction_Space_Size,
if the value of Prediction_Space_Size is less than the
current size of Replication Backlog, no operation is
required, otherwise, the size of Replication Backlog will
be instantaneously raised to Prediction_Space_Size.

Most of the time(when Tensor performs the task of
distributing small messages such as configure or control
information), the data writing rate of the master server
is very small, to avoid the waste of the servers’ memory
resources, we will reduce the space occupation of Repli-
cation Backlog to a lower level(10MB). The formula of
the exponential model is shown as follows, in which t
represents the time interval since the nearnest event for
the space raise of Replication Backlog:

R B Size =

{
10, if R B Size ∗ 2

−t
< 10;

R B Size ∗ 2
−t

, else.
(1)

“Fig. 6” shows the process of the dynamic adjustment
of Replication Backlog mentioned above.

C. A multi-strategy-integrated high reliability assurance
method

Faced with large-scale data distribution scenarios across
IDCs and regions, the service availability of Tensor is
confronted with severe challenges. To ensure the high
reliability of the whole system, when exceptions of sys-
tem components happen, the failover operations must be
conducted in time. However, in large-scale distributed
systems, there are often a series of obvious characteristics
before system components fail, such as the abnormality
of heartbeats, the high latency of network links, the
long-term overload of CPU, memory and disk, etc. With



Fig. 6. A dynamic Replication Backlog adjustment method based
on exponential backoff strategies.

these features, the exceptions of system components can
be predicted. When conducting failovers, the choice of
quasi-failure components to take over the job should be
consciously avoided. To the best of our knowledge, the
field mentioned above has not been fully explored.

In this paper, we use the method of intelligent log
analysis to predict the health status of physical nodes,
use the approach based on service discovery to conduct
failovers, and the predicted health status of each node will
be used as strategic supports for failovers to ensure the
high reliability of Tensor system.

We collect eight different kinds of information in the
logs of each physical node in Tensor system, The Specific
details and threat level of them to the reliability of Tensor
system is shown in ”Table III”.

TABLE III
Selected log information and its threat to the reliability of Tensor

system

The Log information The threat level
The Redis process is crashed Extremely high
There are # logs been generated in the
last two minutes

High

The heartbeats between different lay-
ers of Redis are abnormal

High

The network latency between upper
and lower layers of Redis > 30s

High

The machine memory occupation >=
100%

Relatively high

The machine CPU occupation >=
100%

Relatively high

The machine disk occupation >= 95% Relatively high
The number of clients connected > 20 Relatively high

We use the decision tree model shown in “Fig. 7” to
predict the health status of each node. In this decision
tree, the factors which are closer to the root are more
harmful to the reliability of Tensor system.

If one of the above eight kinds of information appears
in the log of a physical node in the last 30 minutes, we

Fig. 7. The node health state prediction method based on intelligent
log analysis.

will judge this node to be sub-healthy and reduce its
alternative priority in the failover operation.

The rest of this chapter will be arranged to introduce
our failover strategy of Tensor. The strategy is divided into
two different Tiers, in which Tier1 and Tier2 are oriented
to data publishing and subscribing services, respectively.
The overall architecture of our high availability guarantee
scheme is shown in “Fig. 8”, and Consul is used as the
basic component of service discovery.

Fig. 8. The cluster’s high availability guarantee scheme based on
service discovery.

The basic principle of Tier1-level high availability as-
surance scheme is shown in “Fig. 9”, our failover system
will monitor all nodes in the Tier1-BrokerSet, once the
duration time of the master server’s offline state exceeds
our threshold(D-J-Threshold), the election procedure will
be activated, it consists of three steps:

• Save all slave servers into a list;
• Remove sub-healthy nodes determined by the decision

tree mentioned above from the list;
• Select the slave server with the largest replication

offset(which is the server that holds the latest data)
from the remaining servers in the list.

Then our failover system will upgrade the selected server
to be the new master and set the remaining servers as its
slaves.

As shown in “Fig. 9”, the Consul Cluster will conduct
health checks on all Redis nodes periodically in every 2
seconds, and all the changes of the master-slave relation-
ship will be perceived and reserved in time. When the
Data Publisher publishes data, it will firstly send HTTP



Fig. 9. The Tier1-level high availability guarantee scheme.

requests to the Consul Cluster, regardless of whether or
not node failures occur on the Tier1-BrokerSet, the IP
and PORT of the latest service-available master will be
returned and the high availability of the data publishing
service will be strictly ensured.

The basic principle of Tier2-level high availability assur-
ance scheme which is responsible for the data subscribing
service is shown in “Fig. 10”, due to space constraints, we
are not going to detailly describe it here.

Fig. 10. The Tier2-level high availability guarantee scheme.

V. Evaluation
We conduct an extensive set of tests on Tensor in the

production environment to evaluate its data distribution
service from different perspectives, including the perfor-
mance, throughput, scalability, load balancing effects and
reliability, etc.

A. The experimental environment
We deploy the Tensor system in hundreds of ISP IDCs

located in three different areas: A, B and C. According
to the hierarchy, these IDCs are divided into three
different levels: the national headquarter, divisions of the
A, B, C area and their subordinate points(domains), in
which deployed the master server, Tier1-Brokerset, Tier2-
Brokerset of Tensor, respectively, as shown in “Fig. 11”
and “Fig. 12”. After our data is written to the master,

Tensor will distribute them from the national headquarter
to all subordinate levels in turn. At the bottom of our
topology, the number of data subscribers is around 1.0w.

Fig. 11. The topology of the IDCs in our production environment.

Fig. 12. The topology of Tensor in the production environment.

At the same time, we deployed a large-scale Consul
cluster online. To ensure the high availability of service
discovery functions, we provide four IDCs for the server
side of Consul, namely the IDCs of the national head-
quarter and the divisions of the A, B, C area, as shown
in Figure13.

The hardware and software configurations of the servers
is shown in “Table IV”, and the version of Redis is 4.0.11.

TABLE IV
The basic software and hardware configuration of test servers

Basic software &
hardware

The configuration information

CPU Intel(R) Xeon(R) CPU E5-4620 0 @
2.2GHz

Memory DDR3 SDRAM 128G
NIC Broadcom Corporation NetXtreme

BCM5720 Gigabit
Operating System Red Hat Enterprise Linux Server re-

lease 6.4�Santiago�
Kernel Linux 3.10.0-327.el7.x86_64



Fig. 13. The topology of the Consul clusters in the production
environment.

B. System Performance & Throughput
First of all, we measure the network latency between the

headquarter and divisions of A, B and C area, which is
25ms, 30ms and 32ms, respectively. We fix the message size
to 1KB, with the number of messages increases from 1 to
1000w, the time consumed by the distribution of our data
from national headquarters to all subscribers is shown in
Figure 14. Experiment results show that, when the number
of messages is less than 5w, the data distribution time is
about 12s, and when the message number exceeds 5w, the
data distribution time starts to increase, which is shown
in “Fig. 14”.

Fig. 14. The test on system performance and Throughput.

C. System Scalability
We decrease the size of Tensor’s subscribers from 1.0W

to 20 in turn, and the number of messages is fixed to
1000 and 500W, respectively. The data distribution time
from national headquarters to all subscribers is shown in
“Fig. 15” and “Fig. 16”. As shown in the picture, when the
number of messages is fixed at 1000, the data distribution
time of the whole network consumes about 12 seconds and
is relatively stable. At the mean time, while the number
of messages is fixed at 500W and subscribers’ size is less
than 600, the data distribution time is around 50 seconds,

furthermore, while subscribers’ size exceeds 600, the data
distribution time starts to increase.

Fig. 15. The test on system scalability(Message number is fixed to
1000).

Fig. 16. The test on system scalability(Message number is fixed to
500w).

D. System Load Balancing Effects
To evaluate the load balancing effects of Tensor, the

standard deviation of the message numbers on different
brokers will be monitored, calculated and presented in-
stantly. Every time when a new batch of data is published,
there will be a spike which represent the standard devia-
tion value on the dashboard, and when there are no more
new data being published, the spikes will fade away in 20
seconds (For the consideration of the sensitivity of this
statistical data, the detailed figures are now listed here).

E. System Reliability
The seasonal reliability test of the whole Tensor system

has been conducted twice and it will become normalized.
In the first test, all the IDCs in the divisions of the
A area are cut off the electricity supply. Within 30
seconds after the power failure, the election procedure
of the Tier1-BrokerSet succeeded, and within 5 minutes,
the data distribution service returned to normal. In the
second test, five IDCs of subordinate points(domains)
were selected randomly, of which all network cables were
removed. Within 30 seconds after the accident, influenced
data subscribers successfully find and connect to the
nearest Brokers in Tier2, and within 3 minutes, the data
distribution service returned to normal.



Additionally, Tensor has running smoothly online for
half a year.

VI. Conclusion

Nowadays, more and more large-scale distributed sys-
tems are deployed across IDCs, in order to deal with
the latency and reliability challenges of the cross-IDC
distribution of critical data, this paper proposes a Redis-
based low-latency data publish/subscribe framework. For
solving the problem of data loss and duplication caused
by network anomalies or cluster node failures, we design
a transaction-oriented information transfer mechanism
to ensure the eventual consistency of data distribution.
To improve the data synchronization performance, we
optimized Redis’s replication mechanism to make it better
suit the unstable network links. What’s more, we design an
intelligent log analysis based system bottleneck prediction
method and a service discovery oriented system failover
strategy to ensure the high availability of Tensor. An
extensive set of tests on Tensor and the smooth operation
of the system in the production environment for half a
year prove its efficiency and reliability.

Acknowledgment

This work was supported by National Key R&D Pro-
gram 2016 (Grant No. 2016YFB0801300); the Strategic
Priority Research Program of the Chinese Academy of
Sciences (Grant No. XDC02030600).

References

[1] Sathiamoorthy, Maheswaran, et al. ”Xoring elephants: Novel
erasure codes for big data.” Proceedings of the VLDB Endow-
ment. Vol. 6. No. 5. VLDB Endowment, 2013.

[2] Redis[OL]. https://redis.io/.
[3] Zhang, Chen, and Xue Liu. ”Hbasemq: A distributed message

queuing system on clouds with hbase.” 2013 Proceedings IEEE
INFOCOM. IEEE, 2013.

[4] Patel, Dharmit, et al. ”Towards in-order and exactly-once
delivery using hierarchical distributed message queues.” 2014
14th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing. IEEE, 2014.

[5] Sadooghi, Iman, et al. ”Fabriq: Leveraging distributed hash
tables towards distributed publish-subscribe message queues.”
2015 IEEE/ACM 2nd International Symposium on Big Data
Computing (BDC). IEEE, 2015.

[6] Yang, Jinsong, et al. ”Data distribution service for industrial
automation.” Proceedings of 2012 IEEE 17th International
Conference on Emerging Technologies & Factory Automation
(ETFA 2012). IEEE, 2012.

[7] CoreDX DDS[OL]. http://www.twinoakscomputing.com/coredx
[8] Apache Kafka[OL]. https://kafka.apache.org/
[9] RocketMQ[OL]. https://rocketmq.apache.org/

[10] Amazon SQS[OL]. https://aws.amazon.com/cn/sqs/
[11] Hernández, Sergio, et al. ”A reliable and scalable service bus

based on Amazon SQS.” European Conference on Service-
Oriented and Cloud Computing. Springer, Berlin, Heidelberg,
2013.

[12] Liang, Yunlong, et al. ”Study on Service Oriented Real-Time
Message Middleware.” 2015 11th International Conference on
Semantics, Knowledge and Grids (SKG). IEEE, 2015.

[13] Tencent CMQ [OL]. https://cloud.tencent.com/product/cmq
[14] Dragonfly [OL]. https://github.com/alibaba/Dragonfly

[15] Lu, Z. Y., and Z. B. Guo. ”A method of data synchronization
based on message oriented middleware and xml in distributed
heterogeneous environments.” 2015 International Conference on
Artificial Intelligence and Industrial Engineering. Atlantis Press,
2015.

[16] Kang, Woochul, Krasimira Kapitanova, and Sang Hyuk Son.
”RDDS: A real-time data distribution service for cyber-physical
systems.” IEEE Transactions on Industrial Informatics 8.2
(2012): 393-405.

[17] Data Distribution Service(DDS) Version 1.4[EB/OL].
https://www.omg.org/cgi-bin/doc?formal/15-04-11.pdf.


